
LPI certification 101 (release 2) exam
prep, Part 1

Presented by developerWorks, your source for great tutorials

ibm.com/developerWorks

Table of Contents
If you're viewing this document online, you can click any of the topics below to link directly to that section.

1. Before you start... 2
2. Introducing bash.. 3
3. Using Linux commands ... 7
4. Creating links and removing files 13
5. Using wildcards... 18
6. Summary and resources .. 21

LPI certification 101 (release 2) exam prep, Part 1 Page 1 of 22

Section 1. Before you start

About this tutorial
Welcome to "Linux fundamentals," the first of four tutorials designed to prepare you for the
Linux Professional Institute's 101 exam. In this tutorial, we'll introduce you to bash (the
standard Linux shell), show you how to take full advantage of standard Linux commands like
ls, cp, and mv, explain inodes and hard and symbolic links, and much more. By the end of
this tutorial, you'll have a solid grounding in Linux fundamentals and will even be ready to
begin learning some basic Linux system administration tasks. By the end of this series of
tutorials (eight in all), you'll have the knowledge you need to become a Linux Systems
Administrator and will be ready to attain an LPIC Level 1 certification from the Linux
Professional Institute if you so choose.

This particular tutorial (Part 1) is ideal for those who are new to Linux, or those who want to
review or improve their understanding of fundamental Linux concepts like copying and
moving files, creating symbolic and hard links, and using Linux's standard text-processing
commands along with pipelines and redirection. Along the way, we'll share plenty of hints,
tips, and tricks to keep the tutorial "meaty" and practical, even for those with a good amount
of previous Linux experience. For beginners, much of this material will be new, but more
experienced Linux users may find this tutorial to be a great way of "rounding out" their
fundamental Linux skills.

For those who have taken the release 1 version of this tutorial for reasons other than LPI
exam preparation, you probably don't need to take this one. However, if you do plan to take
the exams, you should strongly consider reading this revised tutorial.

About the author
Residing in Albuquerque, New Mexico, Daniel Robbins is the Chief Architect of Gentoo Linux
an advanced ports-based Linux metadistribution. He also writes articles, tutorials, and tips for
the IBM developerWorks Linux zone and Intel Developer Services and has also served as a
contributing author for several books, including Samba Unleashed and SuSE Linux
Unleashed. Daniel enjoys spending time with his wife, Mary, and his daughter, Hadassah.
You can contact Daniel at drobbins@gentoo.org.

For technical questions about the content of this tutorial, contact the author, Daniel Robbins,
at drobbins@gentoo.org.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 2 of 22 LPI certification 101 (release 2) exam prep, Part 1

http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi1-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi1-i.html
http://www-106.ibm.com/developerworks/edu/l-dw-linuxlpi1-i.html
http://www.gentoo.org
http://www.gentoo.org
mailto:drobbins@gentoo.org
mailto:drobbins@gentoo.org

Section 2. Introducing bash

The shell
If you've used a Linux system, you know that when you log in, you are greeted by a prompt
that looks something like this:

$

The particular prompt that you see may look quite different. It may contain your system's
hostname, the name of the current working directory, or both. But regardless of what your
prompt looks like, there's one thing that's certain. The program that printed that prompt is
called a "shell," and it's very likely that your particular shell is a program called bash.

Are you running bash?
You can check to see if you're running bash by typing:

$ echo $SHELL
/bin/bash

If the above line gave you an error or didn't respond similarly to our example, then you may
be running a shell other than bash. In that case, most of this tutorial should still apply, but it
would be advantageous for you to switch to bash for the sake of preparing for the 101 exam.
(The next tutorial in this series, on basic administration, covers changing your shell using the
chsh command.)

About bash
Bash, an acronym for "Bourne-again shell," is the default shell on most Linux systems. The
shell's job is to obey your commands so that you can interact with your Linux system. When
you're finished entering commands, you may instruct the shell to exit or logout, at which
point you'll be returned to a login prompt.

By the way, you can also log out by pressing control-D at the bash prompt.

Using "cd"
As you've probably found, staring at your bash prompt isn't the most exciting thing in the
world. So, let's start using bash to navigate around our filesystem. At the prompt, type the
following (without the $):

$ cd /

We've just told bash that you want to work in /, also known as the root directory; all the
directories on the system form a tree, and / is considered the top of this tree, or the root. cd
sets the directory where you are currently working, also known as the "current working

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 3 of 22

directory".

Paths
To see bash's current working directory, you can type:

$ pwd
/

In the above example, the / argument to cd is called a path. It tells cd where we want to go.
In particular, the / argument is an absolute path, meaning that it specifies a location relative
to the root of the filesystem tree.

Absolute paths
Here are some other absolute paths:

/dev
/usr
/usr/bin
/usr/local/bin

As you can see, the one thing that all absolute paths have in common is that they begin with
/. With a path of /usr/local/bin, we're telling cd to enter the / directory, then the usr directory
under that, and then local and bin. Absolute paths are always evaluated by starting at / first.

Relative paths
The other kind of path is called a relative path. Bash, cd, and other commands always
interpret these paths relative to the current directory. Relative paths never begin with a /. So,
if we're in /usr:

$ cd /usr

Then, we can use a relative path to change to the /usr/local/bin directory:

$ cd local/bin
$ pwd
/usr/local/bin

Using ..
Relative paths may also contain one or more .. directories. The .. directory is a special
directory that points to the parent directory. So, continuing from the example above:

$ pwd

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 4 of 22 LPI certification 101 (release 2) exam prep, Part 1

/usr/local/bin
$ cd ..
$ pwd
/usr/local

As you can see, our current directory is now /usr/local. We were able to go "backwards" one
directory, relative to the current directory that we were in.

Using .., continued
In addition, we can also add .. to an existing relative path, allowing us to go into a directory
that's alongside one we are already in, for example:

$ pwd
/usr/local
$ cd ../share
$ pwd
/usr/share

Relative path examples
Relative paths can get quite complex. Here are a few examples, all without the resultant
target directory displayed. Try to figure out where you'll end up after typing these commands:

$ cd /bin
$ cd ../usr/share/zoneinfo

$ cd /usr/X11R6/bin
$ cd ../lib/X11

$ cd /usr/bin
$ cd ../bin/../bin

Now, try them out and see if you got them right :)

Understanding .
Before we finish our coverage of cd, there are a few more things I need to mention. First,
there is another special directory called ., which means "the current directory". While this
directory isn't used with the cd command, it's often used to execute some program in the
current directory, as follows:

$./myprog

In the above example, the myprog executable residing in the current working directory will
be executed.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 5 of 22

cd and the home directory
If we wanted to change to our home directory, we could type:

$ cd

With no arguments, cd will change to your home directory, which is /root for the superuser
and typically /home/username for a regular user. But what if we want to specify a file in our
home directory? Maybe we want to pass a file argument to the myprog command. If the file
lives in our home directory, we can type:

$./myprog /home/drobbins/myfile.txt

However, using an absolute path like that isn't always convenient. Thankfully, we can use the
~ (tilde) character to do the same thing:

$./myprog ~/myfile.txt

Other users' home directories
Bash will expand a lone ~ to point to your home directory, but you can also use it to point to
other users' home directories. For example, if we wanted to refer to a file called fredsfile.txt in
Fred's home directory, we could type:

$./myprog ~fred/fredsfile.txt

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 6 of 22 LPI certification 101 (release 2) exam prep, Part 1

Section 3. Using Linux commands

Introducing ls
Now, we'll take a quick look at the ls command. Very likely, you're already familiar with ls
and know that typing it by itself will list the contents of the current working directory:

$ cd /usr
$ ls
X11R6 doc i686-pc-linux-gnu lib man sbin ssl
bin gentoo-x86 include libexec portage share tmp
distfiles i686-linux info local portage.old src

By specifying the -a option, you can see all of the files in a directory, including hidden files:
those that begin with .. As you can see in the following example, ls -a reveals the . and
.. special directory links:

$ ls -a
. bin gentoo-x86 include libexec portage share tmp
.. distfiles i686-linux info local portage.old src
X11R6 doc i686-pc-linux-gnu lib man sbin ssl

Long directory listings
You can also specify one or more files or directories on the ls command line. If you specify a
file, ls will show that file only. If you specify a directory, ls will show the contents of the
directory. The -l option comes in very handy when you need to view permissions,
ownership, modification time, and size information in your directory listing.

Long directory listings, continued
In the following example, we use the -l option to display a full listing of my /usr directory.

$ ls -l /usr
drwxr-xr-x 7 root root 168 Nov 24 14:02 X11R6
drwxr-xr-x 2 root root 14576 Dec 27 08:56 bin
drwxr-xr-x 2 root root 8856 Dec 26 12:47 distfiles
lrwxrwxrwx 1 root root 9 Dec 22 20:57 doc -> share/doc
drwxr-xr-x 62 root root 1856 Dec 27 15:54 gentoo-x86
drwxr-xr-x 4 root root 152 Dec 12 23:10 i686-linux
drwxr-xr-x 4 root root 96 Nov 24 13:17 i686-pc-linux-gnu
drwxr-xr-x 54 root root 5992 Dec 24 22:30 include
lrwxrwxrwx 1 root root 10 Dec 22 20:57 info -> share/info
drwxr-xr-x 28 root root 13552 Dec 26 00:31 lib
drwxr-xr-x 3 root root 72 Nov 25 00:34 libexec
drwxr-xr-x 8 root root 240 Dec 22 20:57 local
lrwxrwxrwx 1 root root 9 Dec 22 20:57 man -> share/man
lrwxrwxrwx 1 root root 11 Dec 8 07:59 portage -> gentoo-x86/
drwxr-xr-x 60 root root 1864 Dec 8 07:55 portage.old
drwxr-xr-x 3 root root 3096 Dec 22 20:57 sbin
drwxr-xr-x 46 root root 1144 Dec 24 15:32 share
drwxr-xr-x 8 root root 328 Dec 26 00:07 src

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 7 of 22

drwxr-xr-x 6 root root 176 Nov 24 14:25 ssl
lrwxrwxrwx 1 root root 10 Dec 22 20:57 tmp -> ../var/tmp

The first column displays permissions information for each item in the listing. I'll explain how
to interpret this information in a bit. The next column lists the number of links to each
filesystem object, which we'll gloss over now but return to later. The third and fourth columns
list the owner and group, respectively. The fifth column lists the object size. The sixth column
is the "last modified" time or "mtime" of the object. The last column is the object's name. If
the file is a symbolic link, you'll see a trailing -> and the path to which the symbolic link
points.

Looking at directories
Sometimes, you'll want to look at a directory, rather than inside it. For these situations, you
can specify the -d option, which will tell ls to look at any directories that it would normally
look inside:

$ ls -dl /usr /usr/bin /usr/X11R6/bin ../share
drwxr-xr-x 4 root root 96 Dec 18 18:17 ../share
drwxr-xr-x 17 root root 576 Dec 24 09:03 /usr
drwxr-xr-x 2 root root 3192 Dec 26 12:52 /usr/X11R6/bin
drwxr-xr-x 2 root root 14576 Dec 27 08:56 /usr/bin

Recursive and inode listings
So you can use -d to look at a directory, but you can also use -R to do the opposite: not just
look inside a directory, but recursively look inside all the files and directories inside that
directory! We won't include any example output for this option (since it's generally
voluminous), but you may want to try a few ls -R and ls -Rl commands to get a feel for
how this works.

Finally, the -i ls option can be used to display the inode numbers of the filesystem objects in
the listing:

$ ls -i /usr
1409 X11R6 314258 i686-linux 43090 libexec 13394 sbin
1417 bin 1513 i686-pc-linux-gnu 5120 local 13408 share
8316 distfiles 1517 include 776 man 23779 src
43 doc 1386 info 93892 portage 36737 ssl

70744 gentoo-x86 1585 lib 5132 portage.old 784 tmp

Understanding inodes, Part 1
Every object on a filesystem is assigned a unique index, called an inode number. This might
seem trivial, but understanding inodes is essential to understanding many filesystem
operations. For example, consider the . and .. links that appear in every directory. To fully
understand what a .. directory actually is, we'll first take a look at /usr/local's inode number:

$ ls -id /usr/local

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 8 of 22 LPI certification 101 (release 2) exam prep, Part 1

5120 /usr/local

The /usr/local directory has an inode number of 5120. Now, let's take a look at the inode
number of /usr/local/bin/..:

$ ls -id /usr/local/bin/..
5120 /usr/local/bin/..

Understanding inodes, Part 2
As you can see, /usr/local/bin/.. has the same inode number as /usr/local! Here's how can we
come to grips with this shocking revelation. In the past, we've considered /usr/local to be the
directory itself. Now, we discover that inode 5120 is in fact the directory, and we have found
two directory entries (called "links") that point to this inode. Both /usr/local and /usr/local/bin/..
are links to inode 5120. Although inode 5120 only exists in one place on disk, multiple things
link to it. Inode 5120 is the actual entry on disk.

Understanding inodes, Part 3
In fact, we can see the total number of times that inode 5120 is referenced by using the ls
-dl command:

$ ls -dl /usr/local
drwxr-xr-x 8 root root 240 Dec 22 20:57 /usr/local

If we take a look at the second column from the left, we see that the directory /usr/local
(inode 5120) is referenced eight times. On my system, here are the various paths that
reference this inode:

/usr/local
/usr/local/.
/usr/local/bin/..
/usr/local/games/..
/usr/local/lib/..
/usr/local/sbin/..
/usr/local/share/..
/usr/local/src/..

mkdir
Let's take a quick look at the mkdir command, which can be used to create new directories.
The following example creates three new directories, tic, tac, and toe, all under /tmp:

$ cd /tmp
$ mkdir tic tac toe

By default, the mkdir command doesn't create parent directories for you; the entire path up
to the next-to-last element needs to exist. So, if you want to create the directories
won/der/ful, you'd need to issue three separate mkdir commands:

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 9 of 22

$ mkdir won/der/ful
mkdir: cannot create directory `won/der/ful': No such file or directory
$ mkdir won
$ mkdir won/der
$ mkdir won/der/ful

mkdir -p
However, mkdir has a handy -p option that tells mkdir to create any missing parent
directories, as you can see here:

$ mkdir -p easy/as/pie

All in all, pretty straightforward. To learn more about the mkdir command, type man mkdir
to read the manual page. This will work for nearly all commands covered here (for example,
man ls), except for cd, which is built-in to bash.

touch
Now, we're going to take a quick look at the cp and mv commands, used to copy, rename,
and move files and directories. To begin this overview, we'll first use the touch command to
create a file in /tmp:

$ cd /tmp
$ touch copyme

The touch command updates the "mtime" of a file if it exists (recall the sixth column in ls
-l output). If the file doesn't exist, then a new, empty file will be created. You should now
have a /tmp/copyme file with a size of zero.

echo
Now that the file exists, let's add some data to the file. We can do this using the echo
command, which takes its arguments and prints them to standard output. First, the echo
command by itself:

$ echo "firstfile"
firstfile

echo and redirection
Now, the same echo command with output redirection:

$ echo "firstfile" > copyme

The greater-than sign tells the shell to write echo's output to a file called copyme. This file

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 10 of 22 LPI certification 101 (release 2) exam prep, Part 1

will be created if it doesn't exist, and will be overwritten if it does exist. By typing ls -l, we
can see that the copyme file is 10 bytes long, since it contains the word firstfile and the
newline character:

$ ls -l copyme
-rw-r--r-- 1 root root 10 Dec 28 14:13 copyme

cat and cp
To display the contents of the file on the terminal, use the cat command:

$ cat copyme
firstfile

Now, we can use a basic invocation of the cp command to create a copiedme file from the
original copyme file:

$ cp copyme copiedme

Upon investigation, we find that they are truly separate files; their inode numbers are
different:

$ ls -i copyme copiedme
648284 copiedme 650704 copyme

mv
Now, let's use the mv command to rename "copiedme" to "movedme". The inode number will
remain the same; however, the filename that points to the inode will change.

$ mv copiedme movedme
$ ls -i movedme
648284 movedme

A moved file's inode number will remain the same as long as the destination file resides on
the same filesystem as the source file. We'll take a closer look at filesystems in Part 3 of this
tutorial series.

While we're talking about mv, let's look at another way to use this command. mv, in addition
to allowing us to rename files, also allows us to move one or more files to another location in
the directory heirarchy. For example, to move /var/tmp/myfile.txt to /home/drobbins (which
happens to be my home directory,) I could type:

$ mv /var/tmp/myfile.txt /home/drobbins

After typing this command, myfile.txt will be moved to /home/drobbins/myfile.txt. And if
/home/drobbins is on a different filesystem than /var/tmp, the mv command will handle the
copying of myfile.txt to the new filesystem and erasing it from the old filesystem. As you

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 11 of 22

might guess, when myfile.txt is moved between filesystems, the myfile.txt at the new location
will have a new inode number. This is because every filesystem has its own independent set
of inode numbers.

We can also use the mv command to move multiple files to a single destination directory. For
example, to move myfile1.txt and myarticle3.txt to /home/drobbins, I could type:

$ mv /var/tmp/myfile1.txt /var/tmp/myarticle3.txt /home/drobbins

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 12 of 22 LPI certification 101 (release 2) exam prep, Part 1

Section 4. Creating links and removing files

Hard links
We've mentioned the term "link" when referring to the relationship between directory entries
(the "names" we type) and inodes (the index numbers on the underlying filesystem that we
can usually ignore.) There are actually two kinds of links available on Linux. The kind we've
discussed so far are called hard links. A given inode can have any number of hard links, and
the inode will persist on the filesystem until the all the hard links disappear. When the last
hard link disappears and no program is holding the file open, Linux will delete the file
automatically. New hard links can be created using the ln command:

$ cd /tmp
$ touch firstlink
$ ln firstlink secondlink
$ ls -i firstlink secondlink
15782 firstlink 15782 secondlink

Hard links, continued
As you can see, hard links work on the inode level to point to a particular file. On Linux
systems, hard links have several limitations. For one, you can only make hard links to files,
not directories. That's right; even though . and .. are system-created hard links to directories,
you (even as the "root" user) aren't allowed to create any of your own. The second limitation
of hard links is that they can't span filesystems. This means that you can't create a link from
/usr/bin/bash to /bin/bash if your / and /usr directories exist on separate filesystems.

Symbolic links
In practice, symbolic links (or symlinks) are used more often than hard links. Symlinks are a
special file type where the link refers to another file by name, rather than directly to the inode.
Symlinks do not prevent a file from being deleted; if the target file disappears, then the
symlink will just be unusable, or broken.

Symbolic links, continued
A symbolic link can be created by passing the -s option to ln.

$ ln -s secondlink thirdlink
$ ls -l firstlink secondlink thirdlink
-rw-rw-r-- 2 agriffis agriffis 0 Dec 31 19:08 firstlink
-rw-rw-r-- 2 agriffis agriffis 0 Dec 31 19:08 secondlink
lrwxrwxrwx 1 agriffis agriffis 10 Dec 31 19:39 thirdlink -> secondlink

Symbolic links can be distinguished in ls -l output from normal files in three ways. First,
notice that the first column contains an l character to signify the symbolic link. Second, the
size of the symbolic link is the number of characters in the target (secondlink, in this
case). Third, the last column of the output displays the target filename preceded by a cute
little ->.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 13 of 22

Symlinks in-depth, part 1
Symbolic links are generally more flexible than hard links. You can create a symbolic link to
any type of filesystem object, including directories. And because the implementation of
symbolic links is based on paths (not inodes), it's perfectly fine to create a symbolic link that
points to an object on another physical filesystem. However, this fact can also make symbolic
links tricky to understand.

Symlinks in-depth, part 2
Consider a situation where we want to create a link in /tmp that points to /usr/local/bin.
Should we type this:

$ ln -s /usr/local/bin bin1
$ ls -l bin1
lrwxrwxrwx 1 root root 14 Jan 1 15:42 bin1 -> /usr/local/bin

Or alternatively:

$ ln -s ../usr/local/bin bin2
$ ls -l bin2
lrwxrwxrwx 1 root root 16 Jan 1 15:43 bin2 -> ../usr/local/bin

Symlinks in-depth, part 3
As you can see, both symbolic links point to the same directory. However, if our second
symbolic link is ever moved to another directory, it will be "broken" because of the relative
path:

$ ls -l bin2
lrwxrwxrwx 1 root root 16 Jan 1 15:43 bin2 -> ../usr/local/bin
$ mkdir mynewdir
$ mv bin2 mynewdir
$ cd mynewdir
$ cd bin2
bash: cd: bin2: No such file or directory

Because the directory /tmp/usr/local/bin doesn't exist, we can no longer change directories
into bin2; in other words, bin2 is now broken.

Symlinks in-depth, part 4
For this reason, it is sometimes a good idea to avoid creating symbolic links with relative path
information. However, there are many cases where relative symbolic links come in handy.
Consider an example where you want to create an alternate name for a program in /usr/bin:

ls -l /usr/bin/keychain

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 14 of 22 LPI certification 101 (release 2) exam prep, Part 1

-rwxr-xr-x 1 root root 10150 Dec 12 20:09 /usr/bin/keychain

Symlinks in-depth, part 5
As the root user, you may want to create an alternate name for "keychain," such as "kc". In
this example, we have root access, as evidenced by our bash prompt changing to "#". We
need root access because normal users aren't able to create files in /usr/bin. As root, we
could create an alternate name for keychain as follows:

cd /usr/bin
ln -s /usr/bin/keychain kc
ls -l keychain
-rwxr-xr-x 1 root root 10150 Dec 12 20:09 /usr/bin/keychain
ls -l kc
lrwxrwxrwx 1 root root 17 Mar 27 17:44 kc -> /usr/bin/keychain

In this example, we created a symbolic link called kc that points to the file /usr/bin/keychain.

Symlinks in-depth, part 6
While this solution will work, it will create problems if we decide that we want to move both
files, /usr/bin/keychain and /usr/bin/kc to /usr/local/bin:

mv /usr/bin/keychain /usr/bin/kc /usr/local/bin
ls -l /usr/local/bin/keychain
-rwxr-xr-x 1 root root 10150 Dec 12 20:09 /usr/local/bin/keychain
ls -l /usr/local/bin/kc
lrwxrwxrwx 1 root root 17 Mar 27 17:44 kc -> /usr/bin/keychain

Because we used an absolute path in our symbolic link, our kc symlink is still pointing to
/usr/bin/keychain, which no longer exists since we moved /usr/bin/keychain to /usr/local/bin.

That means that kc is now a broken symlink. Both relative and absolute paths in symbolic
links have their merits, and you should use a type of path that's appropriate for your
particular application. Often, either a relative or absolute path will work just fine. The
following example would have worked even after both files were moved:

cd /usr/bin
ln -s keychain kc
ls -l kc
lrwxrwxrwx 1 root root 8 Jan 5 12:40 kc -> keychain
mv keychain kc /usr/local/bin
ls -l /usr/local/bin/keychain
-rwxr-xr-x 1 root root 10150 Dec 12 20:09 /usr/local/bin/keychain
ls -l /usr/local/bin/kc
lrwxrwxrwx 1 root root 17 Mar 27 17:44 kc -> keychain

Now, we can run the keychain program by typing /usr/local/bin/kc.
/usr/local/bin/kc points to the program keychain in the same directory as kc.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 15 of 22

rm
Now that we know how to use cp, mv, and ln, it's time to learn how to remove objects from
the filesystem. Normally, this is done with the rm command. To remove files, simply specify
them on the command line:

$ cd /tmp
$ touch file1 file2
$ ls -l file1 file2
-rw-r--r-- 1 root root 0 Jan 1 16:41 file1
-rw-r--r-- 1 root root 0 Jan 1 16:41 file2
$ rm file1 file2
$ ls -l file1 file2
ls: file1: No such file or directory
ls: file2: No such file or directory

Note that under Linux, once a file is rm'd, it's typically gone forever. For this reason, many
junior system administrators will use the -i option when removing files. The -i option tells
rm to remove all files in interactive mode -- that is, prompt before removing any file. For
example:

$ rm -i file1 file2
rm: remove regular empty file `file1'? y
rm: remove regular empty file `file2'? y

In the above example, the rm command prompted whether or not the specified files should
really be deleted. In order for them to be deleted, I had to type "y" and Enter twice. If I had
typed "n", the file would not have been removed. Or, if I had done something really wrong, I
could have typed Control-C to abort the rm -i command entirely -- all before it is able to do
any potential damage to my system.

If you are still getting used to the rm command, it can be useful to add the following line to
your ~/.bashrc file using your favorite text editor, and then log out and log back in. Then, any
time you type rm, the bash shell will convert it automatically to an rm -i command. That
way, rm will always work in interactive mode:

alias rm="rm -i"

rmdir
To remove directories, you have two options. You can remove all the objects inside the
directory and then use rmdir to remove the directory itself:

$ mkdir mydir
$ touch mydir/file1
$ rm mydir/file1
$ rmdir mydir

This method is commonly referred to as "directory removal for suckers." All real power users
and administrators worth their salt use the much more convenient rm -rf command,
covered next.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 16 of 22 LPI certification 101 (release 2) exam prep, Part 1

rm and directories
The best way to remove a directory is to use the recursive force options of the rm command
to tell rm to remove the directory you specify, as well as all objects contained in the directory:

$ rm -rf mydir

Generally, rm -rf is the preferred method of removing a directory tree. Be very careful
when using rm -rf, since its power can be used for both good and evil :)

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 17 of 22

Section 5. Using wildcards

Introducing wildcards
In your day-to-day Linux use, there are many times when you may need to perform a single
operation (such as rm) on many filesystem objects at once. In these situations, it can often
be cumbersome to type in many files on the command line:

$ rm file1 file2 file3 file4 file5 file6 file7 file8

Introducing wildcards, continued
To solve this problem, you can take advantage of Linux's built-in wildcard support. This
support, also called "globbing" (for historical reasons), allows you to specify multiple files at
once by using a wildcard pattern. Bash and other Linux commands will interpret this pattern
by looking on disk and finding any files that match it. So, if you had files file1 through file8 in
the current working directory, you could remove these files by typing:

$ rm file[1-8]

Or if you simply wanted to remove all files whose names begin with file as well as any file
named file, you could type:

$ rm file*

The * wildcard matches any character or sequence of characters, or even "no character." Of
course, glob wildcards can be used for more than simply removing files, as we'll see in the
next panel.

Understanding non-matches
If you wanted to list all the filesystem objects in /etc beginning with g as well as any file called
g, you could type:

$ ls -d /etc/g*
/etc/gconf /etc/ggi /etc/gimp /etc/gnome /etc/gnome-vfs-mime-magic /etc/gpm /etc/group /etc/group-

Now, what happens if you specify a pattern that doesn't match any filesystem objects? In the
following example, we try to list all the files in /usr/bin that begin with asdf and end with jkl,
including potentially the file asdfjkl:

$ ls -d /usr/bin/asdf*jkl
ls: /usr/bin/asdf*jkl: No such file or directory

Understanding non-matches, continued

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 18 of 22 LPI certification 101 (release 2) exam prep, Part 1

Here's what happened. Normally, when we specify a pattern, that pattern matches one or
more files on the underlying filesystem, and bash replaces the pattern with a
space-separated list of all matching objects . However, when the pattern doesn't produce any
matches, bash leaves the argument, wildcards and all, as-is. So, then ls can't find the file
/usr/bin/asdf*jkl and it gives us an error. The operative rule here is that glob patterns are
expanded only if they match objects in the filesystem. Otherwise they remain as is and are
passed literally to the program you're calling.

Wildcard syntax: *
Now that we've seen how globbing works, we should look at wildcard syntax. You can use
special characters for wildcard expansion:

* will match zero or more characters. It means "anything can go here, including nothing".
Examples:

• /etc/g* matches all files in /etc that begin with g, or a file called g.

• /tmp/my*1 matches all files in /tmp that begin with my and end with 1, including the file
my1.

Wildcard syntax: ?
? matches any single character. Examples:

• myfile? matches any file whose name consists of myfile followed by a single
character.

• /tmp/notes?txt would match both /tmp/notes.txt and /tmp/notes_txt, if they
exist.

Wildcard syntax: []
This wildcard is like a ?, but it allows more specificity. To use this wildcard, place any
characters you'd like to match inside the []. The resultant expression will match a single
occurrence of any of these characters. You can also use - to specify a range, and even
combine ranges. Examples:

• myfile[12] will match myfile1 and myfile2. The wildcard will be expanded as long
as at least one of these files exists in the current directory.

• [Cc]hange[Ll]og will match Changelog, ChangeLog, changeLog, and changelog.
As you can see, using bracket wildcards can be useful for matching variations in
capitalization.

• ls /etc/[0-9]* will list all files in /etc that begin with a number.

• ls /tmp/[A-Za-z]* will list all files in /tmp that begin with an upper or lower-case letter.

Wildcard syntax: [!]

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 19 of 22

The [!] construct is similar to the [] construct, except rather than matching any characters
inside the brackets, it'll match any character, as long as it is not listed between the [! and].
Example:

• rm myfile[!9] will remove all files named myfile plus a single character, except for
myfile9.

Wildcard caveats
Here are some caveats to watch out for when using wildcards. Since bash treats
wildcard-related characters (?, [,], and *) specially, you need to take special care when
typing in an argument to a command that contains these characters. For example, if you
want to create a file that contains the string [fo]*, the following command may not do what
you want:

$ echo [fo]* > /tmp/mynewfile.txt

If the pattern [fo]* matches any files in the current working directory, then you'll find the
names of those files inside /tmp/mynewfile.txt rather than a literal [fo]* like you were
expecting. The solution? Well, one approach is to surround your characters with single
quotes, which tell bash to perform absolutely no wildcard expansion on them:

$ echo '[fo]*' > /tmp/mynewfile.txt

Wildcard caveats, continued
Using this approach, your new file will contain a literal [fo]* as expected. Alternatively, you
could use backslash escaping to tell bash that [,], and * should be treated literally rather
than as wildcards:

$ echo \[fo\]* > /tmp/mynewfile.txt

Both approaches (single quotes and backslash escaping) have the same effect. Since we're
talking about backslash expansion, now would be a good time to mention that in order to
specify a literal \, you can either enclose it in single quotes as well, or type \\ instead (it will
be expanded to \).

Single vs. double quotes
Note that double quotes will work similarly to single quotes, but will still allow bash to do
some limited expansion. Therefore, single quotes are your best bet when you are truly
interested in passing literal text to a command. For more information on wildcard expansion,
type man 7 glob. For more information on quoting in bash, type man 8 glob and read the
section titled QUOTING. If you're planning to take the LPI exams, consider this a homework
assignment :)

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 20 of 22 LPI certification 101 (release 2) exam prep, Part 1

Section 6. Summary and resources

Summary
Congratulations; you've reached the end of our review of Linux fundamentals! I hope that it
has helped you to firm up your foundational Linux knowledge. The topics you've learned
here, including the basics of bash, basic Linux commands, links, and wildcards, have laid the
groundwork for our next tutorial on basic administration, in which we'll cover topics like
regular expressions, ownership and permissions, user account management, and more.

By continuing in this tutorial series, you'll soon be ready to attain your LPIC Level 1
Certification from the Linux Professional Institute. Speaking of LPIC certification, if this is
something you're interested in, then we recommend that you study the Resources in the next
panel, which have been carefully selected to augment the material covered in this tutorial.

Resources
In the "Bash by example" article series on developerWorks, Daniel shows you how to use
bash programming constructs to write your own bash scripts. This series (particularly Parts
1 and 2) will be good preparation for the LPIC Level 1 exam:

• Bash by example, Part 1: Fundamental programming in the Bourne-again shell

• Bash by example, Part 2: More bash programming fundamentals

• Bash by example, Part 3: Exploring the ebuild system

If you're a beginning or intermediate Linux user, you really owe it to yourself to check out the
Technical FAQ for Linux users, a 50-page in-depth list of frequently-asked Linux questions,
along with detailed answers. The FAQ itself is in PDF (Acrobat) format.

If you're not too familiar with the vi editor, see the developerWorks tutorial Intro to vi. This
tutorial gives you a gentle yet fast-paced introduction to this powerful text editor. Consider
this must-read material if you don't know how to use vi.

Your feedback
Please let us know whether this tutorial was helpful to you and how we could make it better.
We'd also like to hear about other topics you'd like to see covered in developerWorks
tutorials.

For questions about the content of this tutorial, contact the author, Daniel Robbins, at
drobbins@gentoo.org.

Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 101 (release 2) exam prep, Part 1 Page 21 of 22

http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash2.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-bash3.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
http://www-106.ibm.com/developerworks/linux/library/l-faq/index.html
https://www6.software.ibm.com/reg/devworks/dw-linuxvi-i
https://www6.software.ibm.com/reg/devworks/dw-linuxvi-i
https://www6.software.ibm.com/reg/devworks/dw-linuxvi-i
mailto:drobbins@gentoo.org

extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.

ibm.com/developerWorks Presented by developerWorks, your source for great tutorials

Page 22 of 22 LPI certification 101 (release 2) exam prep, Part 1

http://www6.software.ibm.com/dl/devworks/dw-tootomatic-p
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/education.nsf/xml-onlinecourse-bytitle/01F99F6B8BE60C9486256A69005BD21C?OpenDocument
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11
http://www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11

	Table of Contents
	Before you start
	About this tutorial
	About the author

	Introducing bash
	The shell
	Are you running bash?
	About bash
	Using "cd"
	Paths
	Absolute paths
	Relative paths
	Using ..
	Using .., continued
	Relative path examples
	Understanding .
	cd and the home directory
	Other users' home directories

	Using Linux commands
	Introducing ls
	Long directory listings
	Long directory listings, continued
	Looking at directories
	Recursive and inode listings
	Understanding inodes, Part 1
	Understanding inodes, Part 2
	Understanding inodes, Part 3
	mkdir
	mkdir -p
	touch
	echo
	echo and redirection
	cat and cp
	mv

	Creating links and removing files
	Hard links
	Hard links, continued
	Symbolic links
	Symbolic links, continued
	Symlinks in-depth, part 1
	Symlinks in-depth, part 2
	Symlinks in-depth, part 3
	Symlinks in-depth, part 4
	Symlinks in-depth, part 5
	Symlinks in-depth, part 6
	rm
	rmdir
	rm and directories

	Using wildcards
	Introducing wildcards
	Introducing wildcards, continued
	Understanding non-matches
	Understanding non-matches, continued
	Wildcard syntax: *
	Wildcard syntax: ?
	Wildcard syntax: []
	Wildcard syntax: [!]
	Wildcard caveats
	Wildcard caveats, continued
	Single vs. double quotes

	Summary and resources
	Summary
	Resources
	Your feedback

