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Section 1. Before you start

About this tutorial
Welcome to "Compiling sources and managing packages," the first of four tutorials designed
to prepare you for the Linux Professional Institute's 102 exam. In this tutorial, we'll show you
how to compile programs from sources, how to manage shared libraries, and how to use the
Red Hat and Debian package management systems.

This tutorial on compiling sources and managing packages is ideal for those who want to
learn about or improve their Linux package management skills. This tutorial is particularly
appropriate for those who will be setting up applications on Linux servers or desktops. For
many readers, much of this material will be new, but more experienced Linux users may find
this tutorial to be a great way to "round out" their important Linux system administration skills.
If you are new to Linux, we recommend that you start with Part 1 and work through the series
from there.

By the end of this series of tutorials (eight in all, covering the LPI 101 and 102 exams), you'll
have the knowledge you need to become a Linux Systems Administrator and will be ready to
attain an LPIC Level 1 certification from the Linux Professional Institute if you so choose.

For those who have taken the release 1 version of this tutorial for reasons other than LPI
exam preparation, you probably don't need to take this one. However, if you do plan to take
the exams, you should strongly consider reading this revised tutorial.

The LPI logo is a trademark of Linux Professional Institute.

About the authors
For technical questions about the content of this tutorial, contact the authors:
• Daniel Robbins, at drobbins@gentoo.org

• Chris Houser, at chouser@gentoo.org

• Aron Griffis, at agriffis@gentoo.org

Daniel Robbins lives in Albuquerque, New Mexico, and is the Chief Architect of Gentoo
Technologies, Inc., the creator of Gentoo Linux, an advanced Linux for the PC, and the
Portage system, a next-generation ports system for Linux. He has also served as a
contributing author for the Macmillan books Caldera OpenLinux Unleashed, SuSE Linux
Unleashed, and Samba Unleashed. Daniel has been involved with computers in some
fashion since the second grade, when he was first exposed to the Logo programming
language as well as a potentially dangerous dose of Pac Man. This probably explains why he
has since served as a Lead Graphic Artist at SONY Electronic Publishing/Psygnosis. Daniel
enjoys spending time with his wife, Mary, and their daughter, Hadassah.

Chris Houser, known to his friends as "Chouser," has been a UNIX proponent since 1994
when joined the administration team for the computer science network at Taylor University in
Indiana, where he earned his Bachelor's degree in Computer Science and Mathematics.
Since then, he has gone on to work in Web application programming, user interface design,
professional video software support, and now Tru64 UNIX device driver programming at
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Compaq. He has also contributed to various free software projects, most recently to Gentoo
Linux. He lives with his wife and two cats in New Hampshire.

Aron Griffis graduated from Taylor University with a degree in Computer Science and an
award that proclaimed him the "Future Founder of a Utopian UNIX Commune". Working
towards that goal, Aron is employed by Compaq writing network drivers for Tru64 UNIX, and
spending his spare time plunking out tunes on the piano or developing Gentoo Linux. He
lives with his wife Amy (also a UNIX engineer) in Nashua, NH.
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Section 2. Shared libraries

Introducing shared libraries
On Linux systems there are two fundamentally different types of Linux executable programs.
The first are called statically linked executables. Static executables contain all the functions
that they need to execute -- in other words, they're "complete." Because of this, static
executables do not depend on any external library to run.

The second are dynamically linked executables. We'll get into those in the next panel.

Static vs. dynamic executables
We can use the ldd command to determine if a particular executable program is static:

# ldd /sbin/sln
not a dynamic executable

"not a dynamic executable" is ldd's way of saying that sln is statically linked. Now, let's take
a look at sln's size in comparison to its non-static cousin, ln:

# ls -l /bin/ln /sbin/sln
-rwxr-xr-x 1 root root 23000 Jan 14 00:36 /bin/ln
-rwxr-xr-x 1 root root 381072 Jan 14 00:31 /sbin/sln

As you can see, sln is over ten times the size of ln. ln is so much smaller than sln
because it is a dynamic executable. Dynamic executables are incomplete programs that
depend on external shared libraries to provide many of the functions that they need to run.

Dynamically linked dependencies
To view a list of all the shared libraries upon which ln depends, use the ldd command:

# ldd /bin/ln
libc.so.6 => /lib/libc.so.6 (0x40021000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

As you can see, ln depends on the external shared libraries libc.so.6 and
ld-linux.so.2. As a rule, dynamically linked programs are much smaller than their
statically-linked equivalents. However, statically-linked programs come in handy for certain
low-level maintenance tasks. For example, sln is the perfect tool to modify various library
symbolic links that exist in /lib. But in general, you'll find that nearly all executables on a
Linux system are of the dynamically linked variety.

The dynamic loader
So, if dynamic executables don't contain everything they need to run, what part of Linux has
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the job of loading them along with any necessary shared libraries so that they can execute
correctly? The answer is something called the dynamic loader, which is actually the
ld-linux.so.2 library that you see listed as a shared library dependency in ln's ldd
listing. The dynamic loader takes care of loading the shared libraries that dynamically linked
executables need in order to run. Now, let's take a quick look at how the dynamic loader
finds the appropriate shared libraries on your system.

ld.so.conf
The dynamic loader finds shared libraries thanks to two files -- /etc/ld.so.conf and
/etc/ld.so.cache. If you cat your /etc/ld.so.conf file, you'll probably see a listing
that looks something like this:

$ cat /etc/ld.so.conf
/usr/X11R6/lib
/usr/lib/gcc-lib/i686-pc-linux-gnu/2.95.3
/usr/lib/mozilla
/usr/lib/qt-x11-2.3.1/lib
/usr/local/lib

The ld.so.conf file contains a listing of all directories (besides /lib and /usr/lib,
which are automatically included) in which the dynamic loader will look for shared libraries.

ld.so.cache
But before the dynamic loader can "see" this information, it must be converted into an
ld.so.cache file. This is done by running the ldconfig command:

# ldconfig

When ldconfig completes, you now have an up-to-date /etc/ld.so.cache file that reflects
any changes you've made to /etc/ld.so.conf. From this point forward, the dynamic
loader will look in any new directories that you specified in /etc/ld.so.conf when looking
for shared libraries.

ldconfig tips
To view all the shared libraries that ldconfig can "see," type:

# ldconfig -p | less

There's one other handy trick you can use to configure your shared library paths. Sometimes,
you'll want to tell the dynamic loader to try to use shared libraries in a specific directory
before trying any of your /etc/ld.so.conf paths. This can be handy in situations where
you are running an older application that doesn't work with the currently-installed versions of
your libraries.
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LD_LIBRARY_PATH
To instruct the dynamic loader to check a certain directory first, set the LD_LIBRARY_PATH
variable to the directories that you would like searched. Separate multiple paths using
commas; for example:

# export LD_LIBRARY_PATH="/usr/lib/old:/opt/lib"

After LD_LIBRARY_PATH has been exported, any executables started from the current shell
will use libraries in /usr/lib/old or /opt/lib if possible, falling back to the directories
specified in /etc/ld.so.conf if some shared library dependencies are still unsatisfied.

We've completed our coverage of Linux shared libraries. To learn more about shared
libraries, type man ldconfig and man ld.so.
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Section 3. Compiling applications from sources

Introduction
Let's say you find a particular application that you'd like to install on your system. Maybe you
need to run a very recent version of this program, but this most recent version isn't yet
available in a packaging format such as rpm. Perhaps this particular application is only
available in source form, or you need to enable certain features of the program that are not
enabled in the rpm by default.

Whatever the reason, whether of necessity or simply just because you want to compile the
program from its sources, this section will show you how.

Downloading
Your first step will be to locate and download the sources that you want to compile. They'll
probably be in a single archive with a trailing .tar.gz, tar.Z, tar.bz2, or .tgz extension. Go
ahead and download the archive with your favorite browser or ftp program. If the program
happens to have a Web page, this would be a good time to visit it to familiarize yourself with
any installation documentation that may be available.

The program you're installing could depend on the existence of any number of other
programs that may or may not be currently installed on your system. If you know for sure that
your program depends on other programs or libraries that are not currently installed, you'll
need to get these packages installed first (either from a binary package like rpm or by
compiling them from their sources also.) Then, you'll be in a great position to get your original
source file successfully installed.

Unpacking
Unpacking the source archive is relatively easy. If the name of your archive ends with .tar.gz,
.tar.Z, or .tgz, you should be able to unpack the archive by typing:

$ tar xzvf archivename.tar.gz

(x is for extract, z is for gzip decompression, v is for verbose (print the files that are
extracted), and f means that the filename will appear next on the command line.)

Nearly all "source tarballs" will create one main directory that contains all the program's
sources. This way, when you unpack the archive, your current working directory isn't
cluttered with lots of files -- instead, all files are neatly organized in a single, new directory
and don't get in the way.

Listing archives
Every now and then, you may come across an archive that, when decompressed, creates
tons of files in your current working directory. While most tarballs aren't created this way, it's
been known to happen. If you want to verify that your particular tarball was put together
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correctly and creates a main directory to hold the sources, you can view its contents by
typing:

$ tar tzvf archivename.tar.gz | more

(t is for a text listing of the archive. No extraction occurs.)

If there is no common directory listed on the left-hand side of the archive listing, you'll want to
create a new directory, move the tarball inside it, enter the directory, and only then extract
the tarball. Otherwise, you'll be in for a mess!

Unpacking bzip2-compressed archives
It's possible that your archive may be in .tar.bz2 format. Archives with this extension have
been compressed with bzip2. Bzip2 generally compresses significantly better than gzip. Its
only disadvantage is that compression and decompression are slower, and bzip2 consumes
more memory than gzip while running. For modern computers, this isn't much of an issue,
which is why you can expect bzip2 to become more and more popular as time goes on.

Because bzip2 has been gaining popularity, modern versions of GNU tar recognize the j
option to mean "this tarball is compressed with bzip2." When tar encounters the j option, it
will auto-decompress the tarball (by calling the "bzip2" program) before it tries to open the
tarball. For example, here's the command to view the contents of a .tar.bz2 file:

$ tar tjvf archive.tar.bz2 | less

And here is the command to view the contents of a .tar.gz file:

$ tar tzvf archive.tar.gz | less

And here is the command to view the contents of a .tar (uncompressed) file:

$ tar tvf archive.tar | less

bzip2 pipelines
So, your version of tar doesn't recognize those handy bzip2 shortcuts -- what can be done?
Fortunately, there's an easy way to extract the contents of bzip2 tarballs that will work on
nearly all UNIX systems, even if the system in question happens to have a non-GNU version
of tar. To view the contents of a bzip2 file, we can create a shell pipeline:

$ cat archive.tar.bz2 | bzip2 -d | tar tvf - | less

This next pipeline will actually extract the contents of archive.tar.bz2:

$ cat archive.tar.bz2 | bzip2 -d | tar xvf -

bzip2 pipelines (continued)
In the previous two examples, we created a standard UNIX pipeline to view and extract files
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from our archive file. Since tar was called with the f - option, it read tar data from stdin,
rather than trying to read data from a file on disk.

If you used the pipeline method to try to extract the contents of your archive and your system
complained that bzip2 couldn't be found, it's possible that bzip2 isn't installed on your system.
You can download the sources to bzip2 from http://sources.redhat.com/bzip2. After installing
the bzip2 sources (by following this tutorial), you'll then be able to unpack and install the
application you wanted to install in the first place :)

Inspecting sources
Once you've unpacked your sources, you'll want to enter the unpacked directory and check
things out. It's always a good idea to locate any installation-related documentation. Typically,
this information can be found in a README or INSTALL file located in the main source
directory. Additionally, look for README.platform and INSTALL.platform files, where platform
is the name of your particular operating system -- in this case "Linux."

Configuration
Many modern sources contain a configure script in the main source directory. This script
(typically generated by the developers using the GNU autoconf program) is specially
designed to set up the sources so that they compile perfectly on your system. When run, the
configure script probes your system, determining its capabilities, and creates Makefiles,
which contain instructions for building and installing the sources on your system.

The configure script is almost always called "configure." If you find a configure script in the
main source directory, odds are good that it was put there for your use. If you can't find a
configure script, then your sources probably come with a standard Makefile that has been
designed to work across a variety of systems -- this means that you can skip the following
configuration steps, and resume this tutorial where we start talking about "make."

Using configure
Before running the configure script, it's a good idea to get familiar with it. By typing
./configure --help, you can view all the various configuration options that are available
for your program. Many of the options you see, especially the ones listed at the top of the
--help printout, are standard options that will be found in nearly every configure script. The
options listed near the end are often related to the particular package you're trying to
compile. Take a look at them and note any you'd like to enable or disable.

The --prefix option
Most GNU autoconf-based configure scripts have a --prefix option that allows you to
control where your program is installed. By default, most sources install into the /usr/local
prefix. This means that binaries end up in /usr/local/bin, man pages in /usr/local/man, etc.
This is normally what you want; /usr/local is commonly used to store programs that you
compile yourself.
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Using --prefix
If you'd like the sources to install somewhere else, say in /usr, you'll want to pass the
--prefix=/usr option to configure. Likewise, you could also tell configure to install to your
/opt tree, by using the --prefix=/opt option.

What about FHS?
Sometimes, a particular program may default to installing some of its files to non-standard
locations on disk. In particular, a source archive may have a number of installation paths that
do not follow the Linux Filesystem Hierarchy Standard (FHS). Fortunately, the configure
script doesn't just permit the changing of the install prefix, but also allows us to change the
install location for various system components such as man pages.

This capability comes in very handy, since most source archives aren't yet FHS-compliant.
Often, you'll need to add a --mandir=/usr/share/man and a
--infodir=/usr/share/info to the configure command line in order to make your
source package configure itself to eventually install its files in the "correct" locations.

Time to configure
Once you've taken a look at the various configure options and determined which ones you'd
like to use, it's time to run configure. Please note that you may not need to include any
command-line options when you run configure -- in the majority of situations, the defaults will
work (but may not be exactly what you want).

Time to configure (continued)
To run configure, type:

$ ./configure <options>

This could look like:

$ ./configure

or

$ ./configure --prefix=/usr --mandir=/usr/share/man --infodir=/usr/share/info --with-threads

The options you need will depend on the particular package you're configuring. When you
run configure, it will spend a minute or two detecting whatfeatures or tools are available on
your system, printing out the results of its various configuration checks as it goes.

config.cache
Once the configuration process completes, the configure script stores all its configuration
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data in a file called config.cache. This file lives in the same directory as the configure
script itself. If you ever need to run ./configure again after you've updated your system
configuration, make sure you rm config.cache first; otherwise, configure will simply use
the old settings without rechecking your system.

configure and Makefiles
After the configure script completes, it's time to compile the sources into a running program.
A program called make is used to perform this step. If your software package contained a
configure script, then when you ran it, configure created Makefiles that were specially
customized for your system. These files tell the make program how to build the sources and
install the resultant binaries, man pages, and support files.

Makefile intro
Makefiles are typically named makefile or Makefile. There will normally be one makefile in
each directory that contains source files, in addition to one that sits in the main source
directory. The autoconf-generated Makefiles contain instructions (officially called rules) that
specify how to build certain targets, like the program you want to install. make figures out the
order in which all the rules should run.

Invoking make
Invoking make is easy; just type "make" in the current directory. The make program will then
find and interpret a file called makefile or Makefile in the current directory. If you type "make"
all by itself, it will build the default target. Developers normally set up their makefiles so that
the default target compiles all the sources:

$ make

Some makefiles won't have a default target, and you'll need to specify one in order to get the
compilation started:

$ make all

After typing one of these commands, your computer will spend several minutes compiling
your program into object code. Presuming it completes with no errors, you'll be ready to
install the compiled program onto your system.

Installation
After the program is compiled, there's one more important step: installation. Although the
program is compiled, it's not yet ready for use. All its components need to be copied from the
source directory to the correct "live" locations on your filesystem. For example, all binaries
need to be copied to /usr/local/bin, and all man pages need to be installed into
/usr/local/man, etc.

Presented by developerWorks, your source for great tutorials ibm.com/developerWorks

LPI certification 102 (release 2) exam prep, Part 1 Page 11 of 28



Before you can install the software, you'll need to become the root user. This is typically done
by either logging in as root on a separate terminal or typing su, at which point you'll be
prompted for root's password. After typing it in, you'll have root privileges until you exit from
your current shell session by typing "exit" or hitting control-D. If you're already root, you're
ready to go!

make install
Installing sources is easy. In the main source directory, simply type:

# make install

Typing "make install" will tell make to satisfy the "install" target; this target is traditionally used
to copy all the freshly created source files to the correct locations on disk so that your
program can be used. If you didn't specify a --prefix option, it's very likely that quite a few
files and directories will be copied to your /usr/local tree. Depending on the size of the
program, the install target may take anywhere from several seconds to a few minutes to
complete.

In addition to simply copying files, make install will also make sure the installed files have the
correct ownership and permissions. After make install completes successfully, the
program is installed and ready (or almost ready) for use!

Once it's installed
Now that your program is installed, what's next? Running it, of course! If you're not familiar
with how to use the program you just installed, you'll want to read the program's man page
by typing:

$ man programname

It's possible that a program may require additional configuration steps. For example, if you
installed a Web server, you'll need to configure it to start automatically when your system
boots. You may also need to customize a configuration file in /etc before your application will
run.

Ta da!
Now that you've fully installed a software package from its sources, you can run it! To start
the program, type:

$ programname

Congratulations!
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Possible problems
It's very possible that configure or make, or possibly even make install, aborted with some
kind of error code. The next several panels will help you correct common problems.

Missing libraries
Every now and then, you may experience a problem where configure bombs out because
you don't have a certain library installed. In order for you to continue the build process, you'll
need to temporarily put your current program configuration on hold and track down the
sources or binary package for the library that your program needs. Once the correct library is
installed, configure or make should be happy and complete successfully.

Other problems
Sometimes, you'll run into some kind of error that you simply don't know how to fix. As your
experience with UNIX/Linux grows, you'll be able to diagnose more and more seemingly
cryptic error conditions that you encounter during the configure and make process.

Sometimes, errors occur because an installed library is too old (or possibly even too new!).
Other times, the problem you're having is actually the fault of the developers, who may not
have anticipated their program running on a system such as yours -- or maybe they just
made a typo :)

Other problems (continued)
For problems such as these, use your best judgment to determine where to go for help. If this
is your first attempt at compiling a program from source, this may be a good time to select
another, easier program to compile. Once you get the simpler program compiled, you may
have the necessary experience to fix your originally encountered problem. As you continue to
learn more about how UNIX works, you'll get closer to the point where you can actually
"tweak" Makefiles and sources to get even seemingly flaky code to compile cleanly!
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Section 4. Package management concepts

Package management advantages
Beyond building applications from sources, there's another method for installing software on
your Linux system. All Linux distributions employ some form of package management for
installing, upgrading, and uninstalling software packages. Package management offers clear
advantages over installing directly from source:

• Ease of installation and uninstallation

• Ease of upgrading already-installed packages

• Protection of configuration files

• Simple tracking of installed files

Package management disadvantages
Before jumping into instructions for using the most popular package management tools, I'll
acknowledge that there are some Linux users who dislike package management. They might
propose some of the following downsides:

• Binaries built for a specific system perform better

• Resolving package dependencies is a headache

• Package database corruption can render a system unmaintainable

• Packages are hard to create

There is some truth to these statements, but the general consensus among Linux users is
that the advantages outweigh the disadvantages. Additionally, each stumbling block listed
above has a corresponding rebuttal: Multiple packages can be built to optimize for different
systems; package managers can be augmented to resolve dependencies automatically;
databases can be rebuilt based on other files; and the initial effort expended in creating a
package is mitigated by the ease of upgrading or removing that package later.
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Section 5. rpm, the (R)ed Hat (P)ackage (M)anager

Getting started with rpm
The introduction of Red Hat's rpm in 1995 was a huge step forward for Linux distributions.
Not only did it make possible the management of packages on Red Hat Linux, but due to its
GPL license, rpm has become the defacto standard for open source packaging.

The rpm program has a command-line interface by default, although there are GUIs and
Web-based tools to provide a friendlier interface. In this section we'll introduce the most
common command-line operations, using the Xsnow program for the examples. If you would
like to follow along, you can download the Xsnow rpm below, which should work on most
rpm-based distributions.

• xsnow-1.41-1.i386.rpm

Note: If you find the various uses of the term "rpm" confusing in this section, keep in mind
that "rpm" usually refers to the program, whereas "an rpm" or "the rpm" usually refers to an
rpm package.

Installing an rpm
To get started, let's install our Xsnow rpm using rpm -i:

# rpm -i xsnow-1.41-1.i386.rpm

If this command produced no output, then it worked! You should be able to run Xsnow to
enjoy a blizzard on your X desktop. Personally, we prefer to have some visual feedback
when we install an rpm, so we like to include the -h (hash marks to indicate progress) and
-v (verbose) options:

# rpm -ivh xsnow-1.41-1.i386.rpm
xsnow ##################################################

Re-installing an rpm
If you were following along directly, you might have seen the following message from rpm in
the previous example:

# rpm -ivh xsnow-1.41-1.i386.rpm
package xsnow-1.41-1 is already installed

There may be occasions when you wish to re-install an rpm, for instance if you were to
accidentally delete the binary /usr/X11R6/bin/xsnow. In that case, you should first remove the
rpm with rpm -e, then re-install it. Note that the information message from rpm in the
following example does not hinder the removal of the package from the system:
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# rpm -e xsnow
removal of /usr/X11R6/bin/xsnow failed: No such file or directory

# rpm -ivh xsnow-1.41-1.i386.rpm
xsnow ##################################################

Forcefully installing an rpm
Sometimes removing an rpm isn't practical, particularly if there are other programs on the
system that depend on it. For example, you might have installed an "x-amusements" rpm
which lists Xsnow as a dependency, so using rpm -e to remove Xsnow is disallowed:

# rpm -e xsnow
error: removing these packages would break dependencies:

/usr/X11R6/bin/xsnow is needed by x-amusements-1.0-1

In that case, you could re-install Xsnow using the --force option:

# rpm -ivh --force xsnow-1.41-1.i386.rpm
xsnow ##################################################

Installing or removing with --nodeps
An alternative to using --force in the previous panel would be to remove the rpm using the
--nodeps option. This disables rpm's internal dependency checking, and is not
recommended in most circumstances. Nonetheless, it is occasionally useful:

# rpm -e --nodeps xsnow

# rpm -ivh xsnow-1.41-1.i386.rpm
xsnow ##################################################

You can also use --nodeps when installing an rpm. To re-iterate what was said above,
using --nodeps is not recommended, however it is sometimes necessary:

# rpm -ivh --nodeps xsnow-1.41-1.i386.rpm
xsnow ##################################################

Upgrading packages
There is now an rpm of Xsnow version 1.42 on the Xsnow author's Website. You may want
to upgrade your existing Xsnow installation for your particular version of Linux. If you were to
use rpm -ivh --force, it would appear to work, but rpm's internal database would list
both versions as being installed. Instead, you should use rpm -U to upgrade your
installation:

# rpm -Uvh xsnow-1.42-1.i386.rpm
xsnow ##################################################
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Here's a little trick: we rarely use rpm -i at all, because rpm -U will simply install an rpm if
it doesn't exist yet on the system. This is especially useful if you specify multiple packages on
the command-line, where some are currently installed and some are not:

# rpm -Uvh xsnow-1.42-1.i386.rpm xfishtank-2.1tp-1.i386.rpm
xsnow ##################################################
xfishtank ##################################################

Querying with rpm -q
You might have noticed in the examples that installing an rpm requires the full filename, but
removing an rpm requires only the name. This is because rpm maintains an internal
database of the currently installed packages, and you can reference installed packages by
name. For example, let's ask rpm what version of Xsnow is installed:

# rpm -q xsnow
xsnow-1.41-1

In fact, rpm knows even more about the installed package than just the name and version.
We can ask for a lot more information about the Xsnow rpm using rpm -qi:

# rpm -qi xsnow
Name : xsnow Relocations: (not relocateable)
Version : 1.41 Vendor: Dan E. Anderson http://www.dan.drydog.com/
Release : 1 Build Date: Thu 10 May 2001 01:12:26 AM EDT
Install date: Sat 02 Feb 2002 01:00:43 PM EST Build Host: danx.drydog.com
Group : Amusements/Graphics Source RPM: xsnow-1.41-1.src.rpm
Size : 91877 License: Copyright 1984, 1988, 1990, 1993-1995, 2000 by Rick Jansen. Allows packaging & necessary changes for Unix/Linux distributions.
Packager : Dan E. Anderson http://dan.drydog.com/
URL : http://www.euronet.nl/~rja/Xsnow/
Summary : An X Window System based dose of Christmas cheer.
Description :
The Xsnow toy provides a continual gentle snowfall, trees, and Santa
Claus flying his sleigh around the screen on the root window.
Xsnow is only for the X Window System, though; consoles just get coal.

Listing files with rpm -ql
The database maintained by rpm contains quite a lot of information. We've already seen that
it keeps track of what versions of packages are installed, and their associated information. It
can also list the files owned by a given installed package using rpm -ql:

# rpm -ql xsnow
/etc/X11/applnk/Games/xsnow.desktop
/usr/X11R6/bin/xsnow
/usr/X11R6/man/man1/xsnow.1x.gz

Combined with the -c option or the -d option, you can restrict the output to configuration or
documentation files, respectively. This type of query is more useful for larger rpms with long
file lists, but we can still demonstrate using the Xsnow rpm:
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# rpm -qlc xsnow
/etc/X11/applnk/Games/xsnow.desktop

# rpm -qld xsnow
/usr/X11R6/man/man1/xsnow.1x.gz

Querying packages with rpm -qp
If you had the information available with rpm -qi before installing the package, you might
have been able to better decide whether or not to install it. Actually, using rpm -qp allows
you to query an rpm file instead of querying the database. All of the queries we've seen so
far can be applied to rpm files as well as installed packages. Here are all the examples
again, this time employing the -p option:

# rpm -qp xsnow-1.41-1.i386.rpm
xsnow-1.41-1

# rpm -qpi xsnow-1.41-1.i386.rpm
[same output as rpm -qi in the previous panel]

# rpm -qpl xsnow-1.41-1.i386.rpm
/etc/X11/applnk/Games/xsnow.desktop
/usr/X11R6/bin/xsnow
/usr/X11R6/man/man1/xsnow.1x.gz

# rpm -qplc xsnow-1.41-1.i386.rpm
/etc/X11/applnk/Games/xsnow.desktop

# rpm -qpld xsnow-1.41-1.i386.rpm
/usr/X11R6/man/man1/xsnow.1x.gz

Querying all installed packages
You can query all the packages installed on your system by including the -a option. If you
pipe the output through sort and into a pager, then it's a nice way to get a glimpse of what's
installed on your system. For example:

# rpm -qa | sort | less
[output omitted]

Here's how many rpms we have installed on one of our systems:

# rpm -qa | wc -l
287

And here's how many files are in all those rpms:

# rpm -qal | wc -l
45706

Here's a quick tip: Using rpm -qa can ease the administration of multiple systems. If you
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redirect the sorted output to a file on one machine, then do the same on the other machine,
you can use the diff program to see the differences.

Finding the owner for a file
Sometimes it's useful to find out what rpm owns a given file. In theory, you could figure out
what rpm owns /usr/X11R6/bin/xsnow (pretend you don't remember) using a shell
construction like the following:

# rpm -qa | while read p; do rpm -ql $p | grep -q '^/usr/X11R6/bin/xsnow$' && echo $p; done
xsnow-1.41-1

Since this takes a long time to type, and even longer to run (1m50s on one of our Pentiums),
the rpm developers thoughtfully included the capability in rpm. You can query for the owner
of a given file using rpm -qf:

# rpm -qf /usr/X11R6/bin/xsnow
xsnow-1.41-1

Even on the Pentium, that only takes 0.3s to run. And even fast typists will enjoy the
simplicity of rpm -qf compared to the complex shell construction :)

Showing dependencies
Unless you employ options such as --nodeps, rpm normally won't allow you to install or
remove packages that break dependencies. For example, you can't install Xsnow without first
having the X libraries on your system. Once you have Xsnow installed, you can't remove the
X libraries without removing Xsnow first (and probably half of your installed packages).

This is a strength of rpm, even if it's frustrating sometimes. It means that when you install an
rpm, it should just work. You shouldn't need to do much extra work, since rpm has already
verified that the dependencies exist on the system.

Sometimes when you're working on resolving dependencies, it can be useful to query a
package with the -R option to learn about everything it expects to be on the system. For
example, the Xsnow package depends on the C library, the math library, the X libraries, and
specific versions of rpm:

# rpm -qpR xsnow-1.41-1.i386.rpm
rpmlib(PayloadFilesHavePrefix) <= 4.0-1
ld-linux.so.2
libX11.so.6
libXext.so.6
libXpm.so.4
libc.so.6
libm.so.6
libc.so.6(GLIBC_2.0)
libc.so.6(GLIBC_2.1.3)
rpmlib(CompressedFileNames) <= 3.0.4-1
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You can also query the installed database for the same information by omitting the -p:

# rpm -qR xsnow

Verifying the integrity of a package
When you download an rpm from the Web or an ftp site, for the sake of security you may
want to verify its integrity before installing. All rpms are "signed" with an MD5 sum.
Additionally, some authors employ a PGP or GPG signature to further secure their packages.
To check the signature of a package, you can use the --checksig option:

# rpm --checksig xsnow-1.41-1.i386.rpm
xsnow-1.41-1.i386.rpm: md5 GPG NOT OK

Wait a minute! According to that output, the GPG signature is NOT OK. Let's add some
verbosity to see what's wrong:

# rpm --checksig -v xsnow-1.41-1.i386.rpm
xsnow-1.41-1.i386.rpm:
MD5 sum OK: 8ebe63b1dbe86ccd9eaf736a7aa56fd8
gpg: Signature made Thu 10 May 2001 01:16:27 AM EDT using DSA key ID B1F6E46C
gpg: Can't check signature: public key not found

So, the problem is that we couldn't retrieve the author's public key. After we retrieve the
public key from the package author's Website (shown in the output from rpm -qi), the
signature checks out:

# gpg --import dan.asc
gpg: key B1F6E46C: public key imported
gpg: /root/.gnupg/trustdb.gpg: trustdb created
gpg: Total number processed: 1
gpg: imported: 1

# rpm --checksig xsnow-1.41-1.i386.rpm
xsnow-1.41-1.i386.rpm: md5 gpg OK

Verifying an installed package
Similarly to checking the integrity of an rpm, you can also check the integrity of your installed
files using rpm -V. This step makes sure that the files haven't been modified since they
were installed from the rpm:

# rpm -V xsnow

Normally this command displays no output to indicate a clean bill of health. Let's spice things
up and try again:

# rm /usr/X11R6/man/man1/xsnow.1x.gz
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# cp /bin/sh /usr/X11R6/bin/xsnow

# rpm -V xsnow
S.5....T /usr/X11R6/bin/xsnow
missing /usr/X11R6/man/man1/xsnow.1x.gz

This output shows us that the Xsnow binary fails MD5 sum, file size, and mtime tests. And
the man page is missing altogether! Let's repair this broken installation:

# rpm -e xsnow
removal of /usr/X11R6/man/man1/xsnow.1x.gz failed: No such file or directory

# rpm -ivh xsnow-1.41-1.i386.rpm
xsnow ##################################################

Configuring rpm
Rpm rarely needs configuring. It simply works out of the box. In older versions of rpm, you
could change things in /etc/rpmrc to affect run-time operation. In recent versions, that file
has been moved to /usr/lib/rpm/rpmrc, and is not meant to be edited by system
administrators. Mostly it just lists flags and compatibility information for various platforms
(e.g. i386 is compatible with all other x86 architectures).

If you wish to configure rpm, you can do so by editing /etc/rpm/macros. Since this is
rarely necessary, we'll let you read about it in the rpm bundled documentation. You can find
the right documentation file with the following command:

# rpm -qld rpm | grep macros

Additional rpm resources
That's all we've got in this tutorial regarding the Red Hat Package Manager. You should have
enough information to administer a system, and there are a lot more resources available. Be
sure to check out some of these links:

• Xsnow Website

• rpm Home Page

• Maximum RPM - an entire book

• The RPM HOWTO at the Linux Documentation Project

• Red Hat's chapter on package management with rpm

• developerWorks article on creating rpms

• rpmfind.net -- a huge collection of rpms
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Section 6. Debian package management

Introducing apt-get
The Debian package management system is made up of several different tools. The
command-line tool apt-get is the easiest way to install new packages. For example, to install
the program Xsnow, do this as the root user:

# apt-get install xsnow
Reading Package Lists... Done
Building Dependency Tree... Done
The following NEW packages will be installed:
xsnow

0 packages upgraded, 1 newly installed, 0 to remove and 10 not upgraded.
Need to get 17.8kB of archives. After unpacking 42.0kB will be used.
Get:1 http://ftp-mirror.internap.com stable/non-free xsnow 1.40-6 [17.8kB]
Fetched 17.8kB in 0s (18.4kB/s)
Selecting previously deselected package xsnow.
(Reading database ... 5702 files and directories currently installed.)
Unpacking xsnow (from .../archives/xsnow_1.40-6_i386.deb) ...
Setting up xsnow (1.40-6) ...

Skimming through this output, you can see that Xsnow was to be installed, then it was
fetched it from the Web, unpacked, and finally set up.

Simulated install
If apt-get notices that the package you are trying to install depends on other packages, it will
automatically fetch and install those as well. In the last example, only Xsnow was installed,
because all of it's dependencies were already satisfied.

Sometimes, however, the list of packages apt-get needs to fetch can be quite large, and it is
often useful to see what is going to installed before you let it start. The -s option does
exactly this. For example, on one of our systems if we try to install the graphical e-mail
program balsa:

# apt-get -s install balsa
Reading Package Lists... Done
Building Dependency Tree... Done
The following extra packages will be installed:
esound esound-common gdk-imlib1 gnome-bin gnome-libs-data imlib-base libart2
libaudiofile0 libesd0 libglib1.2 libgnome32 libgnomesupport0 libgnomeui32
libgnorba27 libgnorbagtk0 libgtk1.2 libjpeg62 liborbit0 libpng2 libproplist0
libtiff3g libungif3g zlib1g

The following NEW packages will be installed:
balsa esound esound-common gdk-imlib1 gnome-bin gnome-libs-data imlib-base
libart2 libaudiofile0 libesd0 libglib1.2 libgnome32 libgnomesupport0
libgnomeui32 libgnorba27 libgnorbagtk0 libgtk1.2 libjpeg62 liborbit0 libpng2
libproplist0 libtiff3g libungif3g zlib1g

0 packages upgraded, 24 newly installed, 0 to remove and 10 not upgraded.

It then goes on to list the order in which the packages will be installed and configured (or set
up).
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Package resource list: apt-setup
Since apt-get is automatically fetching packages for you, it must know something about
where to find packages that haven't yet been installed. This knowledge is kept in
/etc/apt/sources.list. Although you can edit this file by hand (see the
sources.list man page), you may find it easier to use an interactive tool:

# apt-setup

This tool walks you through the process of finding places to get Debian packages, such as
CDROMs, Web sites, and ftp sites. When you're done, it writes out changes to your
/etc/apt/sources.list file, so that apt-get can find packages when you ask for them.

From apt-get to dselect
The apt-get tool has many command-line options that you can read about in the apt-get man
page. The defaults usually work fine, but if you find yourself using the same option
frequently, you may want to add a setting to your /etc/apt/apt.conf file. This syntax for
this configuration file is described in the apt.conf man page.

apt-get also has many other commands besides the install command we've used so far.
One of these is apt-get dselect-upgrade, which obeys the Status set for each package
on your Debian system.

Starting dselect
The Status for each package is stored in the file /var/lib/dpkg/status, but it is best
updated using another interactive tool:

# dselect
Debian GNU/Linux `dselect' package handling frontend.

* 0. [A]ccess Choose the access method to use.
1. [U]pdate Update list of available packages, if possible.
2. [S]elect Request which packages you want on your system.
3. [I]nstall Install and upgrade wanted packages.
4. [C]onfig Configure any packages that are unconfigured.
5. [R]emove Remove unwanted software.
6. [Q]uit Quit dselect.

Move around with ^P and ^N, cursor keys, initial letters, or digits;
Press <enter> to confirm selection. ^L redraws screen.

Version 1.6.15 (i386). Copyright (C) 1994-1996 Ian Jackson. This is
free software; see the GNU General Public License version 2 or later for
copying conditions. There is NO warranty. See dselect --license for details.

Using dselect Select mode
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You can view and change each package's Status by choosing the Select option. It will then
display a screenful of help. When you're done reading this, press space. Now you will see a
list of packages that looks something like this:

EIOM Pri Section Package Inst.ver Avail.ver Description
All packages
Newly available packages
New Important packages
New Important packages in section admin

n* Imp admin at <none> 3.1.8-10 Delayed job execution and
n* Imp admin cron <none> 3.0pl1-57.3 management of regular bac
n* Imp admin logrotate <none> 3.2-11 Log rotation utility

New Important packages in section doc
n* Imp doc info <none> 4.0-4 Standalone GNU Info docum
n* Imp doc manpages <none> 1.29-2 Man pages about using a L

New Important packages in section editors
n* Imp editors ed <none> 0.2-18.1 The classic unix line edi
n* Imp editors nvi <none> 1.79-16a.1 4.4BSD re-implementation

New Important packages in section interpreters
n* Imp interpre perl-5.005 <none> 5.005.03-7. Larry Wall's Practical Ex

New Important packages in section libs
n* Imp libs libident <none> 0.22-2 simple RFC1413 client lib
n* Imp libs libopenldap- <none> 1.2.12-1 OpenLDAP runtime files fo
n* Imp libs libopenldap1 <none> 1.2.12-1 OpenLDAP libraries.
n* Imp libs libpcre2 <none> 2.08-1 Philip Hazel's Perl Compa

The package Status
The Status for each package can be seen under the somewhat cryptic heading EIOM. The
column we care about is under the M character, where each package is marked with one of
the following:

To change the Mark, just press the key for the code you want (equal, dash, or underline), but
if you want to change the Mark to * (asterisk), you have to press + (plus).

When you are done, use an upper-case Q to save your changes and exit the Select screen. If
you need help at any time in dselect, type ? (question mark). Type a space to get back out
of a help screen.

Install and Configure (dpkg-reconfigure)
Debian doesn't install or remove packages based on their Status settings until you run
something like apt-get dselect-upgrade. This command actually does several steps
for you at once -- Install, Remove, and Configure. The Install and Remove steps shouldn't
need to stop to ask you any questions. The Configure step, however, may ask any number of
questions in order to set up the package just the way you want it.

There are other ways to run these steps. For example, you can choose each step individually
from the main dselect menu.

Some packages use a system called debconf for their Configure step. Those that do can
ask their setup questions in a variety of ways, such as in a text terminal, through a graphical
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interface, or through a Web page. To configure one of these packages, use the
dpkg-reconfigure command. You can even use it to make sure all debconf packages
have been completely configured:

# dpkg-reconfigure --all
debconf: package "3c5x9utils" is not installed or does not use debconf
debconf: package "3dchess" is not installed or does not use debconf
debconf: package "9menu" is not installed or does not use debconf
debconf: package "9wm" is not installed or does not use debconf
debconf: package "a2ps" is not installed or does not use debconf
debconf: package "a2ps-perl-ja" is not installed or does not use debconf
debconf: package "aalib-bin" is not installed or does not use debconf

This will produce a very long list of packages that do not use debconf, but it will also find
some that do and present easy-to-use forms for you to answer the questions that each
package asks.

Getting the status of an installed package
The Debian package management tools we've reviewed so far are best for handling
multi-step operations with long lists of packages. But they don't cover some of the
nuts-and-bolts operations of package management. For this kind of work, you want to use
dpkg.

For example, to get the complete status and description of a package, use the -s option:

# dpkg -s xsnow
Package: xsnow
Status: install ok installed
Priority: optional
Section: non-free/x11
Installed-Size: 41
Maintainer: Martin Schulze <joey@debian.org>
Version: 1.40-6
Depends: libc6, xlib6g (>= 3.3-5)
Description: Brings Christmas to your desktop
Xsnow is the X-windows application that will let it snow on the
root window, in between and on windows. Santa and his reindeer
will complete your festive-season feeling.

The link between a file and its .deb
Since a .deb package contains files, you would think there would be a way to list the files
within the package. Well, you would be right; just use the -L option:

# dpkg -L xsnow
/.
/usr
/usr/doc
/usr/doc/xsnow
/usr/doc/xsnow/copyright
/usr/doc/xsnow/readme.gz
/usr/doc/xsnow/changelog.Debian.gz
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/usr/X11R6
/usr/X11R6/bin
/usr/X11R6/bin/xsnow
/usr/X11R6/man
/usr/X11R6/man/man6
/usr/X11R6/man/man6/xsnow.6.gz

To go the other way around, and find which package contains a specific file, use the -S
option:

# dpkg -S /usr/doc/xsnow/copyright
xsnow: /usr/doc/xsnow/copyright

The name of the package is listed just to the left of the colon.

Finding packages to install
Usually, apt-get will already know about any Debian package you might need. If it doesn't,
you may be able to find the package among these lists of Debian packages, or elsewhere on
the Web.

If you do find and download a .deb file, you can install it using the -i option:

# dpkg -d /tmp/dl/xsnow_1.40-6_i386.deb

If you can't find the package you're looking for as a .deb file, but you find a .rpm or some
other type of package, you may be able to use alien. The alien program can convert
packages from various formats into .debs.

Additional Debian package management resources
There is a lot more to the Debian package management system than we covered here.
There is also a lot more to Debian than its package management system. The following sites
will help round out your knowledge in these areas:

• Debian home page

• Debian installation guide

• Lists of Debian packages

• Alien home page

• Guide to creating your own Debian packages
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Section 7. Summary and resources

Summary
Congratulations, you've reached the end of this tutorial! We hope it has helped solidify your
knowledge of compiling programs from sources, managing shared libraries, and using the
Red Hat and Debian package management systems. Please join us in our next tutorial,
entitled "Configuring and compiling the kernel," in which we show you how to modify and
compile the Linux kernel from source code. By continuing in this tutorial series, you'll soon be
ready to attain your LPIC Level 1 Certification from the Linux Professional Institute.

On the next page, you'll find a number of resources that you will find helpful in learning more
about the subjects presented in this tutorial.

Resources
At linuxdoc.org, you'll find linuxdoc's collection of guides, HOWTOs, FAQs and man-pages to
be invaluable. Be sure to check out Linux Gazette and LinuxFocus as well.

The Linux System Administrators guide, available from Linuxdoc.org's "Guides" section, is a
good complement to this series of tutorials -- give it a read! You may also find Eric S.
Raymond's Unix and Internet Fundamentals HOWTO to be helpful.

In the Bash by example article series on developerWorks, Daniel shows you how to use
bash programming constructs to write your own bash scripts. This bash series (particularly
Parts 1 and 2) will be excellent additional preparation for the LPIC Level 1 exam:
• Bash by example, Part 1: Fundamental programming in the Bourne-again shell

• Bash by example, Part 2: More bash programming fundamentals

• Bash by example, Part 3: Exploring the ebuild system

We highly recommend the Technical FAQ for Linux users by Mark Chapman, a 50-page
in-depth list of frequently asked Linux questions, along with detailed answers. The FAQ itself
is in PDF (Acrobat) format. If you're a beginning or intermediate Linux user, you really owe it
to yourself to check this FAQ out. We also recommend Linux glossary for Linux users, also
from Mark.

If you're not familiar with the vi editor, we strongly recommend that you check out Daniel's Vi
intro -- the cheat sheet method tutorial . This tutorial will give you a gentle yet fast-paced
introduction to this powerful text editor. Consider this must-read material if you don't know
how to use vi.

Feedback
Please send any tutorial feedback you may have to the authors:
• Daniel Robbins, at drobbins@gentoo.org

• Chris Houser, at chouser@gentoo.org

• Aron Griffis, at agriffis@gentoo.org
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Colophon

This tutorial was written entirely in XML, using the developerWorks Toot-O-Matic tutorial
generator. The open source Toot-O-Matic tool is an XSLT stylesheet and several XSLT
extension functions that convert an XML file into a number of HTML pages, a zip file, JPEG
heading graphics, and two PDF files. Our ability to generate multiple text and binary formats
from a single source file illustrates the power and flexibility of XML. (It also saves our
production team a great deal of time and effort.)

You can get the source code for the Toot-O-Matic at
www6.software.ibm.com/dl/devworks/dw-tootomatic-p. The tutorial Building tutorials with the
Toot-O-Matic demonstrates how to use the Toot-O-Matic to create your own tutorials.
developerWorks also hosts a forum devoted to the Toot-O-Matic; it's available at
www-105.ibm.com/developerworks/xml_df.nsf/AllViewTemplate?OpenForm&RestrictToCategory=11.
We'd love to know what you think about the tool.
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